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Concepts of symmetries

• Symmetry is a central concept in physics

• Notions of (global) symmetries:

(1) Ordinary 0-form global symmetry, e. g. flavor symmetries, spacetime

symmetries..

(2) Higher-form symmetries

(3) Higher-group symmetries

(4) Non-invertible symmetries

(5) Sub-system symmetries...

• Lots of recent activities on the subject, applications in high energy and

condensed matter physics.
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Ordinary 0-form global symmetry

• Let us consider QFTs in d-dimensional space-time.

• The ordinary 0-form symmetry with group G : acts on local operators

(0d particles).

• Introduce the topological operator U(g ,M(d−1)) generating the 0-form

symmetry, which corresponds to g ∈ G ,

U(g1,M
(d−1))U(g2,M

(d−1)) = U(g1g2,M
(d−1)) . (1)

• U(g ,M(d−1)) can act non-trivially on a 0-dim. operator V (P)

whenever M(d−1) and P are non-trivially linked.

P
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Ordinary 0-form global symmetry

• Noether’s theorem: continuous 0-form global symmetry gives rise to a

conserved charge.

• In differential form language,

Q(M(d−1)) =

∮
M(d−1)

j . (2)

• e. g. in EM, the (d − 1)-form conserved current j is given by the

Maxwell’s equation as

d ∗ F = j . (3)

U(g ,M(d−1)) = g
∮
M(d−1) j , g ∈ U(1) . (4)
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Higher-form symmetry

• Extend the story to a p-form (p > 0) global symmetry with abelian

group G (Gaiotto, Kapustin, Seiberg, Willett 14’)

• A p-form symmetry is generated by a (d − p − 1)-dimensional

topological operator U(g ,M(d−p−1)):

U(g1,M
(d−p−1))U(g2,M

(d−p−1)) = U(g1g2,M
(d−p−1)) . (5)

and acts on p-dimensional object(operator) V (C(p)).

• U(g ,M(d−p−1)) has non-trivial action on V (C(p)) when M(d−p−1) and

C(p) are non-trivially linked.

M(d-p-1)

C(p)

• For 1-form symmetry in 3d, both U and V are 1-dim. operators.
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3d examples

(1) U(1)k theory with CS level k

S =
k

4π

∫
A ∧ dA (6)

• The 1-form symmetry Γ(1) = Z(1)
k has the form

A→ A +
1

k
λ (7)

λ is a properly normalized flat connection (dλ = 0).

• The topological generator of the 1-form symmetry:

U(e2πi/k ,M(1)) = exp

(
i

∮
M(1)

A

)
(8)

• The charged objects under Z(1)
k are the same Wilson loop operators

Wn(C) = exp(in

∮
C
A) (9)
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3d examples

(2) SU(N)k theory

• The 1-form symmetry Γ(1) = Z(1)
N , generated by

U(e2πin/k ,M(1)) = tr

[
P exp

(
in

∫
M(1)

A

)]
, n =

k

N
. (10)

• Z(1)
N coincides with the center symmetry ZN of SU(N).

• Similar to the higher dimensional SU(N) Yang-Mills theories, Wilson

loop charged under the ZN center symmetry.
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3d examples

(3) ABJM theory: U(N)k × U(N)−k with bifundamental matter

•The 1-form symmetry Γ(1) = Z(1)
k (Bergman, Tachikawa, Zafrir 20’)

• For a single U(N)k factor, regard it as (SU(N)k × U(1)Nk)/ZN .

SU(N)k U(1)Nk

Γ(1) ZN ZNk

·/ZN−→ Γ(1) = Zk (11)

• Naively U(N)k × U(N)−k has Zk × Zk 1-form symmetry, but was

broken to a diagonal Zk by the bifundamental matter (N,N).

(4) Gauge the Zk 1-form symmetry → (U(N)k × U(N)−k)/Zk

• Trivial 1-form symmetry
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’t Hooft anomaly

• For a p-form global symmetry, introduce a (p + 1)-form background

gauge field Cp+1, with field strength Fp+2.

• Gauging a p-form symmetry: Cp+1 becomes a dynamical gauge field

• However, the gauging can be obstructed by ’t Hooft anomaly.

• ’t Hooft anomaly polynomial Ad+1 is a (d + 1)-form

• e. g. 3d ABJ theory U(N + b)k ×U(N)−k has a Z(1)
k 1-form symmetry,

with background gauge field B2.

Ad+1 = − b

2k
B2 ∧ B2 , (12)

obstruct the gauging of Z(1)
k 1-form symmetry when b - k.

• There can also be mixed ’t Hooft anomaly, e. g. BF-terms describing

mixed ’t Hooft anomalies of 0-form and 1-form symmetry
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Anomaly theory

• After we gauge global symmetries with ’t Hooft anomaly, one can

consider a (d + 1)-dimensional anomaly theory coupling to the

d-dimensional theory on the boundary: (Freed 14’)

Boundary QFT
d
 with 

‘t Hooft anomaly Ad+1
Bulk Anomaly 

theory L=Ad+1

• The whole system is anomaly free

• The bulk anomaly theory is an invertible field theory (a TQFT with

1-dim. Hilbert space), which is the low energy limit of an SPT phase .
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AdS/CFT perspective

Boundary QFT
d
 with 

‘t Hooft anomaly Ad+1

Bulk AdSd+1 
SUGRA 

L=Ad+1+...

• ’t Hooft anomaly polynomial Ad+1 ↔ SUGRA terms in AdSd+1

• Background gauge field Cp+1 for p-form symmetry ↔ gauge field in

AdSd+1

• Different boundary conditions of Cp+1 → different global form of gauge

groups in QFTd . (Witten 98’)
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SymTFT

• “Symmetry field theory” (SymTFT): a generalized version of anomaly

theory (Apruzzi, Bonetti, Extebarria, Hosseini, Schafer-Nameki 21’)

• Encodes the different global structures of QFT (gauge groups, etc..)

and ’t Hooft anomaly polynomial.

• Can be derived from M-theory action in two setups:

(1) Geometric engineering: M-theory on R2,1 × X8 (X8 is non-compact)

(2) AdS/CFT: M-theory on AdS4 × Y7, dual to M2 branes probing a

singular space X8. X8 is a cone over Y7. (Y7 is compact)

Y7

X8
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SymTFT from M-theory

• Consider M-theory on M11 =M4 × Y7

• Starting from topological term

S11d = 2π

∫
M11

[
−1

6
C3 ∧ G4 ∧ G4 − C3 ∧ X8

]
. (13)

X8 is a 8-form constructed with the Pontyagin classes of TM11.

• To construct the 4d topological coupling on M4, we consider a gauge

invariant 5-form I5, such that

I5 = dI4 , S4d = 2π

∫
M4

I4 . (14)

• I5 is given by

I5 =

∫
Y7

I12 =

∫
Y7

(
−1

6
G4 ∧ G4 ∧ G4 − G4 ∧ X8

)
(15)
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SymTFT from M-theory

• From

I5 =

∫
Y7

I12 =

∫
Y7

(
−1

6
G4 ∧ G4 ∧ G4 − G4 ∧ X8

)
, (16)

we can expand

G4 =
4∑

p=0

bp(Y7)∑
i=0

g i
4−p ∧ ωi

p . (17)

g i
4−p = dc i3−p are field strengths of (3− p)-form U(1) gauge fields c i3−p,

ωi
p are closed differential p-forms of Y7.

• Integrate over Y7 to get I5, and then I4.
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SymTFT from M-theory

• In order to describe discrete p-form symmetries, one also needs to

include torsional parts of the cohomology group Tor(Hp(Y7,Z)).

• We expand G4 ∈ H4(M11,Z) as

G4 =
4∑

p=0

bp(Y7)∑
i=0

F i
4−p ^ v i

p +
4∑

p=0

∑
α

Bα4−p ^ tαp . (18)

(1) F i
4−p ∼ g i

4−p, v i
p ∼ ωi

p are free generators of Hp(Y7,Z).

(2) Bα4−p are (4− p)-form discrete gauge fields, and tαp are generators of

Tor(Hp(Y7,Z)).

• To write down the topological action using differential forms, use the

formulation of differential cohomology
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SymTFT from M-theory

• Uplift G4 to differential cohomology class

Ğ4 =
4∑

p=0

bp(Y7)∑
i=0

F̆ i
4−p ? v̆

i
p +

4∑
p=0

∑
α

B̆α4−p ? t̆
α
p , (19)

• Plug into the uplift of topological action

Stop

2π
=

∫
M11

Ĭ12 (mod 1) (20)

∫
M11

Ĭ12 =

∫
M11

−1

6
Ğ4 ? Ğ4 ? Ğ4 − Ğ4 ? X̆8 , (21)

Here the integration is the “secondary invariant”, which is defined in

R/Z.
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SymTFT from M-theory

• Using the following assumptions

(1) In the AdS4/CFT3 setups where G4 background flux is over AdS4, we

can take F i
0 = 0

(2) Y7 is connected, oriented and spin, H0(Y7,Z) = Z,

H1(Y7,Z) = H3(Y7,Z) = 0

• The SymTFT action is simplified to

Stop

2π
= −

[
1

2

∫
Y7

v̆ i
2 ? v̆

j
2 ? t̆

α
4

] ∫
M4

F̆ i
2 ? F̆

j
2 ? b̆

α −
[∫

Y7

v̆ i
2 ? t̆

β
2 ? t̆

α
4

] ∫
M4

b̆α ? B̆β
2 ? F̆

i
2

−
[

1

2

∫
Y7

t̆α4 ? t̆β4

] ∫
M4

F̆4 ? b̆
α ? b̆β −

[
1

2

∫
Y7

t̆α2 ? t̆β2 ? t̆
γ
4

] ∫
M4

b̆γ ? B̆α
2 ? B̆β

2 .

(22)

Here b̆α ≡ B̆α0 ∈ Z represents the torsional background G4 flux.
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α
4

] ∫
M4

F̆ i
2 ? F̆

j
2 ? b̆

α −
[∫

Y7

v̆ i
2 ? t̆

β
2 ? t̆

α
4

] ∫
M4

b̆α ? B̆β
2 ? F̆

i
2

−
[

1

2

∫
Y7

t̆α4 ? t̆β4

] ∫
M4

F̆4 ? b̆
α ? b̆β −

[
1

2

∫
Y7

t̆α2 ? t̆β2 ? t̆
γ
4

] ∫
M4

b̆γ ? B̆α
2 ? B̆β

2 .

(22)

Here b̆α ≡ B̆α0 ∈ Z represents the torsional background G4 flux.
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SymTFT from M-theory

• How to compute the numbers in “
∫
Y7

”?

• In this talk, we take Y7 to be the link Sasaki-Einstein sevenfold of a

complex fourfold singularity X8.

Y7

X8

• Consider a resolution X̃8 of X8

• We can identify

(1) Each v̆ i
p with a non-compact (8− p)-cycle D i

8−p in X̃8

(2) Each t̆αp with a compact torsional (8− p)-cycle Zα8−p in X̃8, with

torsion degree lα
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SymTFT from M-theory

• Hence we have

(1) v̆ i
2 → a non-compact divisor Di

(2) t̆α2 → a compact divisor Zα6
(3) t̆α4 → a compact 4-cycle Zα4

1

2

∫
Y7

v̆ i
2 ? v̆

j
2 ? t̆

α
4 =

[
1

2lα
Di · Dj · Zα4

]
(mod 1)

1

2

∫
Y7

v̆ i
2 ? t̆

β
2 ? t̆

α
4 =

[
1

2lαlβ
Di · Zβ6 · Z

α
4

]
(mod 1)

1

2

∫
Y7

t̆α4 ? t̆β4 =

[
1

2lαlβ
Zα4 · Z

β
4

]
(mod 1)

1

2

∫
Y7

t̆α2 ? t̆β2 ? t̆
γ
4 =

[
1

2lαlβ lγ
Zα6 · Z

β
6 · Z

γ
4

]
(mod 1)

(23)

(lα, lβ , lγ are torsion degrees of the corresponding torsional cycles)
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SymTFT from M-theory

• To compute Zα6 and Zα4 , using a Smith normal decomposition

computation in the usual geometric engineering setup.

• Zα6 is a linear combination of compact divisors Ca ⊂ X̃8.

• Consider M-theory on X̃8, each Ca gives rise to a U(1) gauge field Aa

from the decomposition

C3 =
∑
a

Aa ∧ ωa
2 , (24)

ωa
2 is the Poincaré dual (1,1)-form of Ca.

• Electrically charged objects are M2-branes wrapping 2-cycles Ni , whose

U(1)a-charge is qi,a = Ca · Ni .

• The discrete 1-form symmetry in the setup can be computed by the

Smith normal form of qi,a.
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SymTFT from M-theory

• We decompose the charge matrix

q = UDV , (25)

U and V are square matrices, and D is the Smith normal form

D =



l1 0 . . . 0

0 l2 . . . 0
...

...
. . .

...

0 0 0 lr
...

...
...

...

0 0 . . . 0


(26)

• Each non-zero element lα > 1 corresponds to a torsional compact

divisor Zα6 =
∑

a VaαCa, with torsion degree lα.
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SymTFT from M-theory

• For compact 4-cycles Zα4 , compute using the Smith normal

decomposition of the intersection matrix between 4-cycles.

• The torsion degree lα corresponds to a “(-1)-form” symmetry.
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Physical applications

(1) ABJ(M) theories: AdS4 × S7/Zk , dual to N M2-branes probing

X8 = C4/Zk (with torsional G4 flux).

(2) Y p,k theories: AdS4 × Y p,k(CP2), dual to N M2-branes probing a

toric fourfold singularity X8 (with torsional G4 flux).
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ABJ(M) theories

• Gravity side: M-theory on AdS4 × S7/Zk , with N units of G4

background flux and b units of torsional flux

• CFT side: the worldvolume theory of N M2-branes probing C4/Zk

singularities, with b fractional M2-branes at the singularity: 3d N = 6

(U(N + b)k × U(N)−k)/Zm′ (Aharony, Bergman, Jafferis, Maldacena 08’,

Aharony, Bergman, Jafferis 08’)

• Compute from string/M-theory:

(1) ’t Hooft anomaly BB for 1-form symmetry from SymTFT

(2) topological BF term: mixed ’t Hooft anomaly of 0-form and 1-form

symmetries
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ABJ(M) theories-BB term

• For Y7 = S7/Zk , X8 = C4/Zk , we choose a toric resolution X̃8:

(1,0,0,0)

(0,1,0,0)
(0,0,1,0)

(-1,-1,-1,k)

(1,0,0,0)

(0,1,0,0)
(0,0,1,0)

(-1,-1,-1,k)

(0,0,0,1)
resolution

C

D

(1) Z6 = C : compact 6-cycle, torsion degree k

(2) Z4 = C · D: compact 4-cycle, torsion degree k

• SymTFT action:

Stop

2π
= −

[
Z 6 · Z 6 · Z 4

2k3

]
mod 1

∫
AdS4

B̆2 ? B̆2 ? b̆

= − b

2k

∫
AdS4

B̆2 ? B̆2 (mod 1) .

(27)
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ABJ(M) theories-BB term

• ’t Hooft anomaly for Z(1)
k 1-form symmetry in the

U(N + b)k × U(N)−k theory:

Stop

2π
= − b

2k

∫
AdS4

B2 ^ B2 (28)

• Suppose that Z(1)
k = Z(1)

mm′ , and we want to gauge the Zm′ subgroup of

1-form symmetry.

• Z(1)
mm′ → Z(1)

m

• After the gauging, B2 has a periodicity Zm.

• For a spin manifold AdS4,
∫

AdS4
B2 ^ B2 is even.

• For the absence of anomaly after the gauging:

Stop

2π
∈ Z −→ b

2k
× (2m2) =

bm2

k
=

bk

(m′)2
∈ Z. (29)
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ABJ(M) theories-BB term

• bk/(m′)2 ∈ Z: constrains the possible global form of

(U(N + b)k × U(N)−k)/Zm′ .

• For example, consider k = 4, U(N + b)4 × U(N)−4 with Z(1)
4 1-form

symmetry

(1) If we only want to gauge Z2 ⊂ Z(1)
4 , the discrete flux b can be chosen

with any value

(2) If we want to gauge the full Z(1)
4 , then b = 0 (mod 4).

• First derivation from geometry!

• Consistent with field theory argument (Tachikawa, Zafrir 19’).
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ABJ(M) theories-BF term

• BF-coupling term for ABJ(M) theories from IIA derivation (Bergman,

Tachikawa, Zafrir 20’):

SIIA =
1

2π

∫
AdS4

BNS ∧ d(kAD4 + NAD0) . (30)

• IIA on AdS4 ×CP3, with N units of F6 flux over CP3 and k units of F2

flux over CP1 ⊂ CP3.

• In our M-theory analysis:

SBF = 2π

∫
AdS4

B2 ∧ d(kB1 + NA1) . (31)

(1) B2 ∧ kB1 term: from the non-commutativity of G4 and G7 flux.

(2) B2 ∧ NA1 term: from gauging U(1) isometry of Y7 (equivariant

cohomology)
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ABJ(M) theories-BF term

SBF = 2π

∫
AdS4

B2 ∧ d(kB1 + NA1) . (32)

• Let us consider the cases of b = 0 → (U(N)k × U(N)−k)/Zm′ ,

BB-term vanishes.

• Different boundary conditions for A1, B1, B2 in SUGRA → different

0-form and 1-form symmetries for the boundary CFT.

• Possibilities constrained by the SBF

(1) U(N)k × U(N)−k : Neumann condition for B1, Dirichlet for A1, B2.

• B1 free to fluctuate → B2 ∈ Zk

B1 → U(1)(0) , B2 → Z(1)
k (33)

(2) (U(N)k × U(N)−k)/Zk : Neumann condition for B2, Dirichlet for A1,

B1.

• B2 free to fluctuate → kB1 + NA1 = 0

• 0-form symmetry: U(1)× Zgcd(N,k), no 1-form symmetry
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Y p,k theories

• Gravity side: M-theory on AdS4 × Y p,k(CP2), with N units of G4

background flux and torsional flux

• CFT side: the worldvolume theory of N M2-branes probing a toric CY4

singularity X8, with fractional M2-branes at the singularity (Benini, Closset,

Cremonesi 09’, 11’)

(1,0,0,1)

(0,1,0,1)

(-1,-1,k,1)

(0,0,p,1)
X8
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Y p,k theories

• 3d N = 2 quiver gauge theory: (Benini, Closset, Cremonesi 11’)

U(N1)k1

U(N2)k2U(N3)k3

• n0, n1 ∈ Z parametrizes the discrete flux, in the three windows
1 −k ≤ n0 ≤ 0 , 0 ≤ 3n1 − n0 ≤ 3p − k

2 0 ≤ n0 ≤ k , 0 ≤ 3n1 − n0 ≤ 3p − k

3 k ≤ n0 ≤ 2k , 0 ≤ 3n1 − n0 ≤ 3p − k

The field theories are
1 U(N + n1 − p− n0)−n0+ 3

2
n1
×U(N) 1

2
n0−3n1+ 3

2
p−k ×U(N − n1) 1

2
n0+ 3

2
n1− 3

2
p+k

2 U(N + n1 − p)−n0+ 3
2
n1

× U(N)2n0−3n1+ 3
2
p−k × U(N − n1)−n0+ 3

2
n1− 3

2
p+k

3 U(N + n1 − p) 1
2
n0+ 3

2
n1− 3

2
q × U(N) 1

2
n0−3n1+ 3

2
p+ 1

2
k × U(N − n1 + n0 −

k)−n0+ 3
2
n1− 3

2
p+k
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Y p,k theories

• However, it is known that the field theory suffers from a parity anomaly

(certain magnetic monopoles have non-integral U(1) charge)

• Remedy: adding off-diagonal Chern-Simons term Λij (i , j = 1, 2, 3)

δS =
∑
ij

Λij

4π

∫
tr(Ai ) ∧ tr(dAj) (34)

• No explanation from string theory

• Using our SymTFT computation, constrain the possible Λij , by

comparing with the expected 1-form symmetry from geometry!
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comparing with the expected 1-form symmetry from geometry!
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Y p,k theories-BF term

• BF term in the Y p,k(CP2) theories from M-theory

S =
1

2π

∫
B2 ∧ d

(
NA1 + gcd(p, k)B1 + Ωp,k

n0,n1
c1

)
, (35)

(1) A1 term: from gauging isometry of Y p,k(CP2)

(2) B1 term: from non-commutativity of G4 and G7 flux

(3) c1 term: from SymTFT

• Different global form of gauge groups, 1-form symmetries . . .
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Conclusions

• We developed the SymTFT methods for AdS4/CFT3, from M-theory

top-down approach

• For ABJM theories, reproduces correct field theory results from

geometry (1-form symmetry, 1-form ’t Hooft anomaly BB, mixed ’t

Hooft anomaly BF )

• For Y p,k theories, put additional constraints on CFT3. Derived the

topological action (BF, BB terms . . . ) and constrain the possible global

form of CFT3.

• Thanks!
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