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Concepts of symmetries

e Symmetry is a central concept in physics
o Notions of (global) symmetries:

(1) Ordinary 0-form global symmetry, e. g. flavor symmetries, spacetime

symmetries..
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Concepts of symmetries

e Symmetry is a central concept in physics

o Notions of (global) symmetries:

(1) Ordinary 0-form global symmetry, e. g. flavor symmetries, spacetime
symmetries..

(2) Higher-form symmetries

(

3) Higher-group symmetries
(4) Non-invertible symmetries
)

(5 Sub-system symmetries...

e Lots of recent activities on the subject, applications in high energy and

condensed matter physics.
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Ordinary O-form global symmetry

e Let us consider QFTs in d-dimensional space-time.
e The ordinary O-form symmetry with group G: acts on local operators
(0d particles).

Yi-Nan Wang Higher-form symmetries and SymTFT in AdS4/CFT3 3/34



Ordinary O-form global symmetry

e Let us consider QFTs in d-dimensional space-time.

e The ordinary O-form symmetry with group G: acts on local operators
(0d particles).

e Introduce the topological operator U(g, M(d’l)) generating the O-form
symmetry, which corresponds to g € G,

U(g, MU= D)U(go, MU@1) = U(grgo, M@1). (1)

e U(g, M@=V can act non-trivially on a 0-dim. operator V(P)

(d—1

whenever M(4=1) and P are non-trivially linked.

M(d*l)
I
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Ordinary O-form global symmetry

e Noether's theorem: continuous O-form global symmetry gives rise to a
conserved charge.

Yi-Nan Wang Higher-form symmetries and SymTFT in AdS4/CFT3 4/34



Ordinary O-form global symmetry

e Noether's theorem: continuous O-form global symmetry gives rise to a
conserved charge.
e In differential form language,

oM~ . @

M(d—l)

e e. g. in EM, the (d — 1)-form conserved current j is given by the
Maxwell's equation as
dxF=j. (3)

U(g, M) = ghue-ni - g e U(1). (4)
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Higher-form symmetry

e Extend the story to a p-form (p > 0) global symmetry with abelian
group G (Gaiotto, Kapustin, Seiberg, Willett 14")

e A p-form symmetry is generated by a (d — p — 1)-dimensional
topological operator U(g, M(d=P=1):

U(gi, MU=P=DYU(go, MU=PD)) = U(g1o, MU4=PY)). (5)

and acts on p-dimensional object(operator) V/(C(?)).
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Higher-form symmetry

e Extend the story to a p-form (p > 0) global symmetry with abelian
group G (Gaiotto, Kapustin, Seiberg, Willett 14")

e A p-form symmetry is generated by a (d — p — 1)-dimensional
topological operator U(g, M(d=P=1):

U(gi, MU=P=DYU(go, MU=PD)) = U(g1o, MU4=PY)). (5)

and acts on p-dimensional object(operator) V/(C(?)).
e U(g, M9=P=1) has non-trivial action on V/(C(P)) when M(¢=P=1) and

C(P) are non-trivially linked.

M(d-p-l)

e For 1-form symmetry in 3d, both U and V are 1-dim. operators.
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3d examples

(1) U(1)k theory with CS level k

szi/AAdA (6)
47

e The 1-form symmetry T1) = Zs(l) has the form
1

A is a properly normalized flat connection (dA = 0).
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3d examples

(1) U(1)k theory with CS level k

szi/AAdA (6)
47

e The 1-form symmetry T1) = Z&l) has the form

A%AJF%)\ (7)

A is a properly normalized flat connection (dA = 0).

e The topological generator of the 1-form symmetry:

U(e27ri/k’ M(l)) = exp (, flzﬂ(l) A) (8)

e The charged objects under ZE}) are the same Wilson loop operators

W,(C) = exp(in f A) (9)

C
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3d examples

(2) SU(N) theory
e The 1-form symmetry T1) = Zs\:,l), generated by

U(emin/k MY = ¢ [7; exp (in/ A)] , n= 5 (10)
M) N

. Zs\}) coincides with the center symmetry Zy of SU(N).
e Similar to the higher dimensional SU(N) Yang-Mills theories, Wilson
loop charged under the Zy center symmetry.
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3d examples

(3) ABJM theory: U(N)x x U(N)_x with bifundamental matter
e The 1-form symmetry F(l) = ZE(]') (Bergman, Tachikawa, Zafrir 20")

O
Yi-Nan Wang
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3d examples

(3) ABJM theory: U(N)x x U(N)_x with bifundamental matter
o The 1-form symmetry F(l) = ZS) (Bergman, Tachikawa, Zafrir 20")
e For a single U(N) factor, regard it as (SU(N), x U(1)nk)/Zn-

SU(N)x

U(l)/\/k /2y

r@

YAy

21 =7,
Lk
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3d examples

(3) ABJM theory: U(N)x x U(N)_x with bifundamental matter
o The 1-form symmetry F(l) = ZS}) (Bergman, Tachikawa, Zafrir 20")
e For a single U(N) factor, regard it as (SU(N), x U(1)nk)/Zn-

SU(N)x

Ul | 124 1) _ g,

r@

YAy

L

o Naively U(N)g x U(N)_k has Zy x Zi 1-form symmetry, but was

broken to a diagonal Z, by the bifundamental matter (N, N).
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3d examples

(3) ABJM theory: U(N)x x U(N)_x with bifundamental matter
o The 1-form symmetry F(l) = ZS}) (Bergman, Tachikawa, Zafrir 20")
e For a single U(N) factor, regard it as (SU(N), x U(1)nk)/Zn-

SU(N)x

U(1) nk

r@

YAy

L

oy — g, (11)

o Naively U(N)g x U(N)_k has Zy x Zi 1-form symmetry, but was

broken to a diagonal Z, by the bifundamental matter (N, N).

(4) Gauge the Zy 1-form symmetry — (U(N)x x U(N)_x)/Zx

e Trivial 1-form symmetry

Yi-Nan Wang
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't Hooft anomaly

e For a p-form global symmetry, introduce a (p + 1)-form background
gauge field C,11, with field strength Fp o,
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't Hooft anomaly

e For a p-form global symmetry, introduce a (p + 1)-form background
gauge field C,11, with field strength Fp o,

o Gauging a p-form symmetry: C,; becomes a dynamical gauge field
e However, the gauging can be obstructed by 't Hooft anomaly.

e 't Hooft anomaly polynomial Ay is a (d + 1)-form
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't Hooft anomaly

e For a p-form global symmetry, introduce a (p + 1)-form background
gauge field C,11, with field strength Fp o,

o Gauging a p-form symmetry: C,; becomes a dynamical gauge field
e However, the gauging can be obstructed by 't Hooft anomaly.

e 't Hooft anomaly polynomial Ay is a (d + 1)-form

e e. g. 3d ABJ theory U(N + b)x x U(N)_ has a Zg) 1-form symmetry,

with background gauge field B;.

b
Agi1 = —782/\52, (12)

k

obstruct the gauging of Zf) 1-form symmetry when bt k.

e There can also be mixed 't Hooft anomaly, e. g. BF-terms describing

mixed 't Hooft anomalies of O-form and 1-form symmetry
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Anomaly theory

o After we gauge global symmetries with 't Hooft anomaly, one can
consider a (d + 1)-dimensional anomaly theory coupling to the
d-dimensional theory on the boundary: (Freed 14')

Boundary QFT, with
‘t Hooft anomaly 4, |

Bulk Anomaly
theory L=A4
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Anomaly theory

o After we gauge global symmetries with 't Hooft anomaly, one can
consider a (d + 1)-dimensional anomaly theory coupling to the
d-dimensional theory on the boundary: (Freed 14')

Boundary QFT, with

‘t Hooft anomaly 4, | Bulk Anomaly

theory L=A

d+1

e The whole system is anomaly free
e The bulk anomaly theory is an invertible field theory (a TQFT with
1-dim. Hilbert space), which is the low energy limit of an SPT phase .
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AdS/CFT perspective

Boundary QFT, with
‘t Hooft anomaly A, |

e 't Hooft anomaly polynomial Ayy; > SUGRA terms in AdSy 1

o Background gauge field Cy41 for p-form symmetry <+ gauge field in
AdSq41

o Different boundary conditions of C,,1 — different global form of gauge
groups in QFTy. (Witten 98)
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SymTFT

e “Symmetry field theory” (SymTFT): a generalized version of anomaly
theory (Apruzzi, Bonetti, Extebarria, Hosseini, Schafer-Nameki 21")
e Encodes the different global structures of QFT (gauge groups, etc..)

and 't Hooft anomaly polynomial.
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SymTFT

e “Symmetry field theory” (SymTFT): a generalized version of anomaly
theory (Apruzzi, Bonetti, Extebarria, Hosseini, Schafer-Nameki 21')

e Encodes the different global structures of QFT (gauge groups, etc..)
and 't Hooft anomaly polynomial.

e Can be derived from M-theory action in two setups:

(1) Geometric engineering: M-theory on R*! x Xg (Xg is non-compact)
(2) AdS/CFT: M-theory on AdS; x Y7, dual to M2 branes probing a
singular space Xg. Xz is a cone over Y7. (Y7 is compact)
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SymTFT from M-theory

e Consider M-theory on M1 = My x Y7
e Starting from topological term

1
S11d :277'/ |:—C3/\G4/\G4—C3/\X8 . (]_3)
Mg 6

Ag is a 8-form constructed with the Pontyagin classes of T M.
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SymTFT from M-theory

e Consider M-theory on M1 = My x Y7
e Starting from topological term

1
Slld :277'/ |:—C3/\ Gy N\ Gy — C3/\X8:| . (]_3)
Mg 6

Ag is a 8-form constructed with the Pontyagin classes of T M.
e To construct the 4d topological coupling on My, we consider a gauge
invariant 5-form [, such that

I5 = dl4 y S4d = 27'['/ I4 . (14)
My

e 5 is given by

1
I5:/ /12:/ <6G4/\G4/\G4G4/\X8) (15)
Y7 Y7
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SymTFT from M-theory

e From

1
/5:/ /12:/ (—6G4AG4/\G4_G4/\X8> 9 (16)
' Y7

we can expand
4
Gy = Z 8ap NWp- (17)

g, = dcj_, are field strengths of (3 — p)-form U(1) gauge fields ¢f ,,
wl’; are closed differential p-forms of Y7.

e Integrate over Y7 to get I5, and then /.
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SymTFT from M-theory

e In order to describe discrete p-form symmetries, one also needs to
include torsional parts of the cohomology group Tor(HP(Y7,Z)).
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SymTFT from M-theory

e In order to describe discrete p-form symmetries, one also needs to
include torsional parts of the cohomology group Tor(HP(Y7,Z)).
e We expand G; € H*(Mi1,Z) as

4
G:Z F4pvv+ZZB4p . (18)
p=0 i=0 p=0 «

(1) Fi_, ~ &i_, v} ~ w}, are free generators of HP(Y7,Z).
(2) B, are (4 — p)-form discrete gauge fields, and t; are generators of
Tor(HP(Y7,Z)).
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SymTFT from M-theory

e In order to describe discrete p-form symmetries, one also needs to
include torsional parts of the cohomology group Tor(HP(Y7,Z)).
e We expand G; € H*(Mi1,Z) as

G:Z F4pvv+ZZB4p . (18)

p=0 i=0 p=0 «

P~ %p
(2) B, are (4 — p)-form discrete gauge fields, and t; are generators of

Tor(HP(Y7,7)).
e To write down the topological action using differential forms, use the

(1) FLP ~ g}l;p, vi ~ wi are free generators of HP(Y7,7Z).

formulation of differential cohomology
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SymTFT from M-theory

e Uplift G4 to differential cohomology class

4 4
Z “i—p*VHZZBf_p*f? (19)

p=0 i=0 p=0 «

M3
I
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SymTFT from M-theory

e Uplift G4 to differential cohomology class

4
G=3Y A X Bl (9)

e Plug into the uplift of topological action

Stop / 7
Ztop _ ho (mod 1) (20)
27 My
y 1y = = = g
/ I12:/ 7*G4*G4*G4*G4*X87 (21)
M11 Mll 6

Here the integration is the “secondary invariant”, which is defined in
R/Z.
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SymTFT from M-theory

e Using the following assumptions

(1) In the AdS4/CFT3 setups where G, background flux is over AdS,, we
can take F{ =0

(2) Y7 is connected, oriented and spin, H°(Y7,Z) = Z,

HY(Y7,Z) = H3(Y7,Z) = 0
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SymTFT from M-theory

e Using the following assumptions

(1) In the AdS4/CFT3 setups where G, background flux is over AdS,, we
can take F{ =0

(2) Y7 is connected, oriented and spin, H°(Y7,Z) = Z,

HY(Y7,Z) = H3(Y7,Z) = 0

e The SymTFT action is simplified to

S 1 . o ui e ous . o us o
t°”:—{7/ vﬁ*vé*tf]/ Fg’*Fé*ba—{/ vé*tf*tfﬁ}/ b* « BY x F;
27 2 Yy M,y J Y7 My

1 [ w s R N D
—{5/ tf*tf]/ F4*b°‘*b5—{§/ tﬁ“*t;*tzl'}/ bY « B « B .
vy M, Jv; Sy

(22)

Here b* = B§ € 7 represents the torsional background G, flux.
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SymTFT from M-theory

e How to compute the numbers in “ [, "?
e In this talk, we take Y7 to be the link Sasaki-Einstein sevenfold of a

complex fourfold singularity Xg.
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SymTFT from M-theory

e How to compute the numbers in “ [, "?
e In this talk, we take Y7 to be the link Sasaki-Einstein sevenfold of a
complex fourfold singularity Xg.

e Consider a resolution )~<8 of Xs

o We can identify

(1) Each ¥} with a non-compact (8 — p)-cycle D§_, in Xg -

(2) Each £$ with a compact torsional (8 — p)-cycle Zg* , in X, with
torsion degree I,
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SymTFT from M-theory

e Hence we have

(1) ¥ — a non-compact divisor D;
(2) £ — a compact divisor Z&
(3) & — a compact 4-cycle Z

Yi-Nan Wang Higher-form symmetries and SymTFT in AdS4/CFT3
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SymTFT from M-theory

e Hence we have

H
1)
)
)

1

/ VA Vo B
2 )y,
1

f/ Vi x B x B
2 )y,
1 vo v
—/ Bx by
2 )y,

1 .
- £ %
2/y7 2

ff*fz—

(1) ¥ — a non-compact divisor D;
(2) £ — a compact divisor Z&
(3) £ — a compact 4-cycle Z/

1
|2/,
1
| 2115
1
| 2115
Tl

D,' . DJZf:| (mod 1)

D;-Z¢- Zf‘} (mod 1)
(23)

ze Zf} (mod 1)

ze-70 - 7] 1
_2Ia/ﬁ/'y 6 6 4:| (mOd )

(la, I3, Iy, are torsion degrees of the corresponding torsional cycles)

Yi-Nan Wang
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SymTFT from M-theory

e To compute Z&* and Z;*, using a Smith normal decomposition

computation in the usual geometric engineering setup.
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SymTFT from M-theory

e To compute Z&* and Zj*, using a Smith normal decomposition
computation in the usual geometric engineering setup.

e Z§ is a linear combination of compact divisors C, C Xg.

e Consider M-theory on X, each C, gives rise to a U(1) gauge field A,
from the decomposition

G=) AAuws, (24)

wj is the Poincaré dual (1,1)-form of C,.
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SymTFT from M-theory

e To compute Z&* and Zj*, using a Smith normal decomposition
computation in the usual geometric engineering setup.

e Z§ is a linear combination of compact divisors C, C Xg.

e Consider M-theory on X, each C, gives rise to a U(1) gauge field A,
from the decomposition

G=) AAuws, (24)

w3 is the Poincaré dual (1,1)-form of C,.

o Electrically charged objects are M2-branes wrapping 2-cycles ;, whose
U(1),-charge is i, = C, - N;.

e The discrete 1-form symmetry in the setup can be computed by the
Smith normal form of g; ,.
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SymTFT from M-theory

e \We decompose the charge matrix
qg=UDV, (25)

U and V are square matrices, and D is the Smith normal form

L O ... 0
0 L ... 0

D= : 2
00 0 I (26)
00 ... 0

e Each non-zero element /, > 1 corresponds to a torsional compact
divisor Z& = ", Voo G, with torsion degree /5.
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SymTFT from M-theory

e For compact 4-cycles Z¢, compute using the Smith normal
decomposition of the intersection matrix between 4-cycles.

e The torsion degree /, corresponds to a “(-1)-form” symmetry.

Yi-Nan Wang Higher-form symmetries and SymTFT in AdS4/CFT3
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Physical applications

(1) ABJ(M) theories: AdSs x S7/Zy, dual to N M2-branes probing
Xg = C*/Zy (with torsional Gy flux).

(2) YP* theories: AdS, x YP*(CP?), dual to N M2-branes probing a
toric fourfold singularity Xg (with torsional G4 flux).
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ABJ(M) theories

e Gravity side: M-theory on AdSy x S7/Zy, with N units of G,
background flux and b units of torsional flux
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ABJ(M) theories

e Gravity side: M-theory on AdSy x S7/Zy, with N units of G,
background flux and b units of torsional flux

o CFT side: the worldvolume theory of N M2-branes probing C*/Z
singularities, with b fractional M2-branes at the singularity: 3d V' =6
(U(N -+ b)k X U(N),k)/Zm/ (Aharony, Bergman, Jafferis, Maldacena 08’,
Aharony, Bergman, Jafferis 08")
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ABJ(M) theories

e Gravity side: M-theory on AdSy x S7/Zy, with N units of G,
background flux and b units of torsional flux

o CFT side: the worldvolume theory of N M2-branes probing C*/Z
singularities, with b fractional M2-branes at the singularity: 3d /' =6
(U(N -+ b)k X U(N),k)/Zm/ (Aharony, Bergman, Jafferis, Maldacena 08’,
Aharony, Bergman, Jafferis 08")

e Compute from string/M-theory:

(1) 't Hooft anomaly BB for 1-form symmetry from SymTFT

(2) topological BF term: mixed 't Hooft anomaly of 0-form and 1-form
symmetries
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ABJ(M) theories-BB term

e For Y; = §7/Z, Xg = C*/Z, we choose a toric resolution Xg:
(-1-1-1,k) (-1,-1,-1,k)

resolution ¢
- (0,0,0,1)
(0,0,1,0) (0,0,1,0)
é 1(0’1’070) (0,1,0,0)
(1,0,0,0) (1,0,0,0)
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ABJ(M) theories-BB term

o For Y7 = S7/Zy, Xg = C*/Zx, we choose a toric resolution Xa:

(-1,-1,-1,k) (-1,-1,-1,k)

resolution
_

(0,0,1,0)

é :7(0,17070)

(1707070)

(1) Zs = C: compact 6-cycle, torsion degree k
(2) Zy = C - D: compact 4-cycle, torsion degree k
e SymTFT action:

z6.276. 74 v v
S (222 [ g
2m 2k mod 1 JAdS,
b

= —— éz*éz (mod 1)
2k \/AdSA
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ABJ(M) theories-BB term

e 't Hooft anomaly for Zg(l) 1-form symmetry in the

U(N + b)g x U(N)_x theory:

Swp b

27T _ﬂ AdS,

B, — B, (28)
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ABJ(M) theories-BB term

e 't Hooft anomaly for ZE}) 1-form symmetry in the

U(N + b)x x U(N)_ theory:

Stop b
=—— B, — B 28
27T 2k AdS, 2 2 ( )
e Suppose that Zf) = Zg,)n,, and we want to gauge the Z,, subgroup of

1-form symmetry.

o 78, 7
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ABJ(M) theories-BB term

e 't Hooft anomaly for ZE}) 1-form symmetry in the

U(N + b)x x U(N)_ theory:

Stop b
=—— B, — B 28
27T 2k AdS, 2 2 ( )
e Suppose that ZS}) = Zg,)n,, and we want to gauge the Z,, subgroup of

1-form symmetry.
oz, 78
e After the gauging, B, has a periodicity Z,.

e For a spin manifold AdS,, fAdS4 B, — B, is even.
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ABJ(M) theories-BB term

e 't Hooft anomaly for ZE}) 1-form symmetry in the

U(N + b)x x U(N)_ theory:

Stop b
=—— B, — B 28
271' 2k AdS, 2 2 ( )
e Suppose that ZS}) = Zgr)n,, and we want to gauge the Z,, subgroup of

1-form symmetry.
oz 5 7{)
o After the gauging, B, has a periodicity Z,,.

e For a spin manifold AdS,, fAdS4 B, — B, is even.

e For the absence of anomaly after the gauging:

bm? bk

StOP b 2\ _ _
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ABJ(M) theories-BB term

e bk/(m')? € Z: constrains the possible global form of
(U(N + b)k X U(N)_k)/Zm/.
e For example, consider k = 4, U(N + b)s x U(N)_4 with Zgl) 1-form

symmetry
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ABJ(M) theories-BB term

e bk/(m')? € Z: constrains the possible global form of

(U(N + b)k X U(N)_k)/Zm/.

e For example, consider k = 4, U(N + b)s x U(N)_4 with Zgl) 1-form
symmetry

)

(1) If we only want to gauge Z, C 7'V, the discrete flux b can be chosen

with any value
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ABJ(M) theories-BB term

e bk/(m')? € Z: constrains the possible global form of

(U(N + b)k X U(N)_k)/Zm/.

e For example, consider k = 4, U(N + b)s x U(N)_4 with Zgl) 1-form
symmetry

), the discrete flux b can be chosen

(1) If we only want to gauge Z, C z{!
with any value

(2) If we want to gauge the full Zgl), then b =0 (mod 4).
e First derivation from geometry!

e Consistent with field theory argument (Tachikawa, Zafrir 19°).
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ABJ(M) theories-BF term

e BF-coupling term for ABJ(M) theories from IIA derivation (Bergman,
Tachikawa, Zafrir 20'):

1
Sua = — Bns A d(kAps + NApo) . (30)

27 AdS,

e IIA on AdS; x CP3, with N units of Fg flux over CP? and k units of F»
flux over CP! c CP°.
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ABJ(M) theories-BF term

e BF-coupling term for ABJ(M) theories from IIA derivation (Bergman,
Tachikawa, Zafrir 20'):

1
Sia = — Bns A d(kAD4 + NAD()) . (30)
27 Jads,
o |IA on AdS,; x CP3, with N units of Fg flux over CP? and k units of F
flux over CP! c CP°.

o |n our M-theory analysis:
Sgr = 27T/ B, A d(kBl + NAl) . (31)
AdS,
(1) Ba A kBy term: from the non-commutativity of G4 and G; flux.

(2) B, A NA; term: from gauging U(1) isometry of Y7 (equivariant
cohomology)
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ABJ(M) theories-BF term

Sk = 27‘(‘/ B>y A d(kBl + NAl) . (32)
AdS,

o Let us consider the cases of b=0 — (U(N)x x UN)_k)/Zpy,
BB-term vanishes.

e Different boundary conditions for Ay, By, B, in SUGRA — different
0-form and 1-form symmetries for the boundary CFT.
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ABJ(M) theories-BF term

SBF = 27T/ Bz AN d(kBl + NAl) . (32)
AdS,

o Let us consider the cases of b=0 — (U(N)x x UN)_k)/Zpy,
BB-term vanishes.

e Different boundary conditions for Ay, By, B, in SUGRA — different
0-form and 1-form symmetries for the boundary CFT.

e Possibilities constrained by the Sgf

(1) U(N)k x U(N)—_k: Neumann condition for By, Dirichlet for A;, Bs.
e B free to fluctuate — B> € Zy

By — U(1)©® | By 7V (33)
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ABJ(M) theories-BF term

SBF = 27T/ Bz AN d(kBl + NAl) . (32)
AdS,

o Let us consider the cases of b=0 — (U(N)x x UN)_k)/Zpy,
BB-term vanishes.

e Different boundary conditions for Ay, By, B, in SUGRA — different
0-form and 1-form symmetries for the boundary CFT.

e Possibilities constrained by the Sgf

(1) U(N)k x U(N)—_k: Neumann condition for By, Dirichlet for A;, Bs.
e B free to fluctuate — B> € Zy

By — U(1)©® | By 7V (33)

(2) (U(N)k x U(N)_x)/Zi: Neumann condition for B, Dirichlet for A,
B;.

e B, free to fluctuate — kB; + NA; =0

e 0-form symmetry: U(1) X Zgeg(n k), no 1-form symmetry
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Y Pk theories

e Gravity side: M-theory on AdS, x vak((C]P’Z), with N units of Gs
background flux and torsional flux

e CFT side: the worldvolume theory of N M2-branes probing a toric CY4
singularity Xg, with fractional M2-branes at the singularity (Benini, Closset,
Cremonesi 09, 11")

(-1-LE1)

(0,0,p,1)

1(0,170,1)

(1,0,0,1)
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Y Pk theories

e 3d A = 2 quiver gauge theory: (Benini, Closset, Cremonesi 11")

® ng, ny € 7 parametrizes the discrete flux, in the three windows
Q@ k<n<0, 0<3m—n<3p—k
Q@0<n<k, 0<3m—-—n<3p—k
Q k<n <2k, 0<3m—n<3p—k
The field theories are
(] U(N+ m—-p— no)—n0+%n1 X U(N)%n0—3n1+%p—k X U(N_ n1)1n0+%n1—%p+k

2
e U(N + - p)fnoJr%nl X U(N)2n073n1+%pfk x U(N - n1)7n0+%n17%p+k
Q@ UN+n —p) x U(N) x UN — ny + ng —

k)

1 3 3 1 3..1
3M0+53m—59 3no—3m+3p+sk
7no+%n17%p+k
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Y Pk theories

e However, it is known that the field theory suffers from a parity anomaly
(certain magnetic monopoles have non-integral U(1) charge)
e Remedy: adding off-diagonal Chern-Simons term A;; (i,j = 1,2,3)

65 = Z % / tr(A;) A tr(dA;) (34)

Yi-Nan Wang Higher-form symmetries and SymTFT in AdS4/CFT3 32/34



Y Pk theories

e However, it is known that the field theory suffers from a parity anomaly
(certain magnetic monopoles have non-integral U(1) charge)
e Remedy: adding off-diagonal Chern-Simons term A;; (i,j = 1,2,3)

65 = Z % / tr(A;) A tr(dA;) (34)

e No explanation from string theory
o Using our SymTFT computation, constrain the possible Aj;, by
comparing with the expected 1-form symmetry from geometry!
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Y Pk theories-BF term

e BF term in the YP(CP?) theories from M-theory

1
S=5- / By A d (NA; + ged(p, k) By + QR¥, c1) (35)

(1) A; term: from gauging isometry of Y?K(CP?)

(2) B; term: from non-commutativity of G4 and G7 flux
3) ¢ term: from SymTFT
D

e Different global form of gauge groups, 1-form symmetries ...
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Conclusions

o We developed the SymTFT methods for AdS4/CFT3, from M-theory
top-down approach

e For ABJM theories, reproduces correct field theory results from
geometry (1-form symmetry, 1-form 't Hooft anomaly BB, mixed 't
Hooft anomaly BF)

e For YPk theories, put additional constraints on CFT3. Derived the
topological action (BF, BB terms ...) and constrain the possible global
form of CFT3.

e Thanks!
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